پردازش سیگنال های الکتروآنسفالوگرافی به منظور تشخیص انواع تشنجات صرعی پتی مال وگراندمال با استفاده از شبکه های عصبی مصنوعی
Authors
abstract
مقدمه: تشنج مهم ترین تظاهر بیماری صرع بوده و آنالیز دقیق آن نیز از طریق انجام الکتروآنسفالوگرافی امکان پذیراست. به وسیله آشکار سازی دشارژهای صرعی شکل (امواج سوزنی ) امکان تشخیص بیماری صرع در سیگنال eeg وجود دارد. یک درصد افراد در زندگیشان این بیماری را تجربه می کنند. پیش از این قابلیت تشخیص هوشمندانه امواج سوزنی بررسی شده اما هدف این تحقیق تشخیص صرع های پتی مال (غایب) و گراندمال از طریق پردازش سیگنال های eeg توسط سیستم هوشمند (شبکه عصبی) می باشد. روش کار: در این مقاله توصیفی از تعداد 100 عدد سیگنال eeg مربوط به افراد مختلف در شرایط سلامت، فواصل تشنج و درحین تشنج مربوط به دو نیمکره مغزی استفاده شده است. با استفاده از تکنیک های نرم افزاری نویز50 هرتزو آرتیفکت آن حذف شده سپس توسط نرولوژیست این سیگنال ها به سه دسته سالم، تشنجات صرعی پتی مال (تپیک 3 هرتز) وگراندمال (درفازکلونیک با فرکانس 4 هرتز) به قطعات 6 ثانیه جداسازی شده است. اطلاعات این سیگنال ها شامل امواج سوزنی-آهسته، پلی اسپایک و پلی شارپ می باشد که استخراج و توسط تکنیک های نرم افزاری شبکه های عصبی به سه دسته سالم، پتی مال و گراندمال طبقه بندی گردیده است. نتایج: در نرم افزار طراحی شده، دقت تشخیص صرع های پتی مال و گراندمال در حدود 80 درصد می باشد. نتیجه گیری: به علت پیچیدگی در امواج مغزی و سختی تشخیص دیداری نوار مغزی این روش کمک زیادی در تشخیص بیماری صرع به پزشکان می کند. این پژوهش فعلا برای تشخیص دو نوع صرع شایع به کار رفته و قابل گسترش به انواع مختلف صرع می باشد.
similar resources
شناسایی خسارت در سازه با استفاده از پردازش سیگنال و شبکه های عصبی مصنوعی
در طول دو دهه اخیر بحث شناسایی خرابی و پایش سلامت سازه ها با هدف کاهش هزینه نگهداری و بهبود ایمنی و قابلیت اطمینان سازه مورد توجه قرار گرفته است. پس از وقوع زلزله با توجه به وضعیت بحرانی موجود و تعداد زیاد سازه های بلند مرتبه امکان مراجعه حضوری به تک تک سازه ها وجود ندارد. این موضوع اهمیت توسعه روش هایی که بتوانند تنها با استفاده از سیگنال های پاسخ ثبت شده در مدت زمان زلزله، خسارت ایجاد شده در ...
full textتشخیص عیب یاتاقان های غلتشی با استفاده از سیگنال های ارتعاشی بر اساس تحلیل طیف تکین و شبکه عصبی مصنوعی
در کاربردهای صنعتی، پایش وضعیت و عیبیابی بیرینگها از اهمیت زیادی برخوردار است. تحلیل ارتعاشی، انتشار صدا، دمانگاری و تحلیل روانکار از جمله روشهای تشخیصی جهت شناسایی عیوب بیرینگها میباشند. یکی از قابل اطمینانترین روشها جهت عیبیابی تجهیزات دوار، مطالعه بر روی سیگنال ارتعاشی میباشد. تاکنون روشهای مختلفی جهت عیبیابی بیرینگهای غلتشی توسط سیگنالهای ارتعاشی در حوزه زمان ارائه شده است. بیش...
full textمدلسازی لوله های انتقال گاز با شبکه های عصبی مصنوعی به منظور تشخیص عیوب آنها
این مقاله معرفی رویکرد جدید برای عیب یابی خطوط لوله انتقال گاز با استفاده از شبکه عصبی مصنوعی به کمک امواج مکانیکی است که این روش بسیار ارزان تر و آسان تر از روش اولتراسوند است. که در حال حاضر مشغول به کارمی باشد. این خطوط معمولا در شرایط محیطی سخت و دور از دسترس و در مسافت های طولانی قرار دارند و استفاده از سیستم های که بصورت آنی و دقیق بتوانند عیب ها و نشتی های این لوله را گزارش دهند حیاتی ...
full textتشخیص آنامولی های TEC قبل از وقوع زلزله های بزرگ با استفاده از شبکه عصبی مصنوعی
وقوع زلزله علاوه بر تغییر در هندسه و فیزیک پوسته زمین تأثیرات دیگری را نیز به همراه دارد. از آن جمله، تأثیر بر لایه یونسفر می‍باشد که خود را بهصورت تغییر در میزان الکترون، چگالی یونها، میدانهای الکتریکی و مغناطیسی این لایه نشان میدهد. هر پارامتر ژئوفیزیکی و ژئوشیمیایی در لایههای لیتوسفر، اتمسفر و یونسفر زمین که قبل از وقوع زلزله تغییراتی در آن پدید آید بهعنوان پیشنشانگر شناخته میشود...
full textاستفاده از شبکه های تجمیع خبرگان(Mixture of Experts)به منظور طبقه بندی سیگنال مغزی افراد سالم و بیماران صرعی
چکیده: EEGیکی از مهمترین و رایجترین مراجع برای مطالعه عملکرد مغز واختلالات نورولوژیک است. به همین دلیل، تشخیص تغییرات EEG توسط سیستمهای خودکار، موضوعی است که برای سالهای متوالی تحت مطالعه است.از آنجا که در هر سیستم دسته بندی، صحت تصمیم گیری از اهمیت ویژه ای برخوردار است، لذا نیازمند وجود روش های طبقه بندی بهتر برای سیگنال مغزی هستیم. در این تحقیق، به دنبال ارائه یک سیستم هوشمند مرکب برای بهبو...
full textMy Resources
Save resource for easier access later
Journal title:
مجله دانشگاه علوم پزشکی اراکجلد ۱۱، شماره ۳، صفحات ۸۹-۹۷
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023